3.212 \(\int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=168 \[ \frac{(2 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 a^2 d}+\frac{(2 A+B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a^2 d (\sec (c+d x)+1)}-\frac{A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{(A-B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

-((A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d)) + ((2*A + B)*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + ((2*A + B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*
d*(1 + Sec[c + d*x])) + ((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.309636, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4019, 4020, 3787, 3771, 2639, 2641} \[ \frac{(2 A+B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a^2 d (\sec (c+d x)+1)}+\frac{(2 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{(A-B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]

[Out]

-((A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d)) + ((2*A + B)*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + ((2*A + B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*
d*(1 + Sec[c + d*x])) + ((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4020

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*(2
*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*
b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx &=\frac{(A-B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac{\int \frac{-\frac{1}{2} a (A-B)+\frac{3}{2} a (A+B) \sec (c+d x)}{\sqrt{\sec (c+d x)} (a+a \sec (c+d x))} \, dx}{3 a^2}\\ &=\frac{(2 A+B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac{(A-B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac{\int \frac{-\frac{3 a^2 A}{2}+\frac{1}{2} a^2 (2 A+B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{3 a^4}\\ &=\frac{(2 A+B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac{(A-B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{A \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{2 a^2}+\frac{(2 A+B) \int \sqrt{\sec (c+d x)} \, dx}{6 a^2}\\ &=\frac{(2 A+B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac{(A-B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{\left (A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a^2}+\frac{\left ((2 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}\\ &=-\frac{A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 d}+\frac{(2 A+B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a^2 d}+\frac{(2 A+B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac{(A-B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 3.24178, size = 256, normalized size = 1.52 \[ \frac{e^{-i d x} \cos \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{5}{2}}(c+d x) \left (\cos \left (\frac{1}{2} (c+3 d x)\right )+i \sin \left (\frac{1}{2} (c+3 d x)\right )\right ) \left (i \left (A e^{-i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )-2 \cos (c+d x) (-i (A-B) \sin (c+d x)+(7 A-B) \cos (c+d x)+5 A+B)\right )+8 (2 A+B) \sqrt{\cos (c+d x)} \cos ^3\left (\frac{1}{2} (c+d x)\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-i \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{6 a^2 d (\sec (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*(8*(2*A + B)*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2,
 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*((A*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hype
rgeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) - 2*Cos[c + d*x]*(5*A + B + (7*A - B)*Cos[
c + d*x] - I*(A - B)*Sin[c + d*x])))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Sec[
c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 1.894, size = 350, normalized size = 2.1 \begin{align*} -{\frac{1}{6\,{a}^{2}d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 12\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+4\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +6\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +2\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -20\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+2\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+9\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-3\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-A+B \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2*d*x+1/2*c)^6+4*A*cos(1/2*d*x+1/2*c)
^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*A*co
s(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))+2*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))-20*A*cos(1/2*d*x+1/2*c)^4+2*B*cos(1/2*d*x+1/2*c)^4+9*A*cos(1/2*d*x+1/2*c)^2-3*B*cos(
1/2*d*x+1/2*c)^2-A+B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*
x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\sec \left (d x + c\right )}}{a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sqrt{\sec{\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sec ^{\frac{3}{2}}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**2,x)

[Out]

(Integral(A*sqrt(sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)**(3/2)/(se
c(c + d*x)**2 + 2*sec(c + d*x) + 1), x))/a**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^2, x)